nanoHUB:

translating traditional research to new paradigms in publishing, computing, research, & education

Who? > 1,400,000 users annually > 1,800 contributors • 172 countries

nanoHUB usage

Faculty
Students
Industry practitioners

nanoHUB:

translating traditional research to new paradigms in publishing, computing, research, & education

What ?

> 440 nano-Apps in the cloud
> 4,000 lectures and tutorials
> 100 courses => MOOC

Cyberinfrastructure 24/7 operation with 99.9% uptime 35 professionals 70+ servers, 4,000+ compute cores

Who?

- > 1,400,000 users annually
- > 1,800 contributors
- 172 countries
- Faculty
- Students
- Industry practitioners

Research Impact:

- nanoHUB tools now listed in
 WEB OF SCIENCE: THOMSON REUTERS
- > 1,700 papers cite nanoHUB
- > 26,700 secondary citations
- h-index of 75

Educational Impact

- Rapid curriculum change
- >35,000 students use tools in classrooms

nanoHUB:

translating traditional research to new paradigms in publishing, computing, research, & education

What ?

> 440 nano-Apps in the cloud
> 4,000 lectures and tutorials
> 100 courses => MOOC

Cyberinfrastructure 24/7 operation with 99.9% uptin 35 professionals 70+ servers, 4,000+ compute cores

Who?

- > 1,400,000 users annually
- > 1,800 contributors
- 172 countries
- Faculty
- Students
- Industry practitioners

NOT about compute cycles! NOT computational scientists!

> Different users! Access, Usability, _{Cycles}!

Research Impact:

- nanoHUB tools now listed in
 WEB OF SCIENCE* (thomson reuters
- > 1,700 papers cite nanoHUB
- > 26,700 secondary citations
- h-index of 75

Educational Impact

- Rapid curriculum change
- >35,000 students use tools in classrooms

Research Impact

translational research => research

38% Experimental Data

17% Experimentalists

65% outside NCN

7% Industry

nano researchers

computer science

educators

new paradigms

Research Impact translational research => research

Education Impact ?

translational research => education ?

new paradigms

Education Impact

SEMESTER

translational research => education

Time (Days)

STUDENTS

Approach: user behavior analysis NOT surveys! => scalable

new paradigms

New Assessment Approach!

35,100+ students, 1,780+ courses, 185 institutions

translational research => education

new paradigm

New Assessment Approach!

New Assessment Approach!

New nanoHUB Paradigm: The fist science / engineering computing cloud for research and education Usage Patterns

Educational Use

New nanoHUB Paradigm: The fist science / engineering computing cloud for research and education Literature Citations

=> Tool Qualification

Educational Use

0

New nanoHUB Paradigm: The fist science / engineering computing cloud for research and education

Education and buai use Research are coupled! 235 tools!

Educational Use

Rapid Adoption of Research

Time Between Tool Publications and First Use in Classroom

Hubs 'R Us

hubzero.org

- Feb 2007: 1 hub
- Feb 2008: 5 hubs
- Feb 2009: 8 hubs
- Feb 2010: 21 hubs
- Sept 2010: >30 hubs
- Sept 2012: >40 hubs

Each hub has its own funding stream

Outside institutions: EPA, NYSTAR, Rice

Usual Science Gateway Process

- 175 tools / 4 years:
- \$500k/tool

58

nanoHUB.org

- NO new research!
- Not validated by researcher (disowned)
- Researcher has much better version
- Code rewrite takes
 2-3 years

Many Proposals read alike

Usual Science Gateway Process

- 175 tools / 4 years: <u>\$8</u>
- \$500k/tool

nanoHUB.org

- **Customers / Users**
- Scale back expectations
- Not research codes
- Toy applications
- Not deep research
- Maybe for education?

Generating a Bad Reputation

nanoHUB Process

- 175 tools / 4 years without \$88M
- Eliminate bottlenecks
 - No Middleman
 - No Rewrite
 - Retain ownership
- Rapid Deployment:
 2-3 years → 1-2 weeks
- Rappture toolkit
- HUBZETO Ecosystem

UB is different

nano4/1B can prove it

Developer Collaboration Network

Developer Collaboration Impact

Developer Collaboration Impact

Developer Collaboration Impact

Small Collaborations:Large CollaborationsScattered SuccessPredictable Success

Old Approach Surviving Universities

Retrospective and longitudinal data => nanoHUB has demonstrated several paradigm shifts

a fundamental change in approach or underlying assumptions

	842	
والكري أسريسه		

<complex-block>

Reference Types (2000-2016)

translational research => education

translational research => research

WEB OF SCIENCE[™]

Operational 24/7 99.9% uptime

computational services: simple => HPC

Retrospective and longitudinal data => nanoHUB has demonstrated several paradigm shifts

a fundamental change in approach or underlying assumptions

These are demonstrators! Existence proofs!

What is the next BIG thing?

Retrospective and longitudinal data => nanoHUB has demonstrated several paradigm shifts

a fundamental change in approach or underlying assumptions

These are demonstrators! Existence proofs!

What is the next BIG thing?

Vision

to accelerate innovation through user-centric science and engineering

Vision

to accelerate innovation through user-centric science and engineering

Mission

to make science and engineering products usable, discoverable, reproducible, and easy to create for learners, educators, researchers, and business professionals

- US STEM User Growth Growth
 - 100k faculty
 - 400k grad students
 - 2.4M undergrads
 - 20M secondary ed

- US STEM User Growth Growth
 - 100k faculty

\$5M

- 400k grad students
- 2.4M undergrads
- 20M secondary ed
- US Content Contribution Growth

US Content Contribution Growth

- US Content Contribution Growth
 - \$1.8B federal investments
 - \$2.1B industrial investments

Challenges / Opportunities US Content Contribution Growth \$1.8B federal investments \$2.1B industrial investments Sustainability

NNI

NSF NNI

NCN

Industry R&D

nanoHU

Challenges / Opportunities US Content Contribution Growth

- \$1.8B federal investments
- \$2.1B industrial investments
- Sustainability
 - Freemium models
 - Publishing models

WEB OF SCIENCE™

NNI

NSF NNI

NCN

nanoHUB us

Industry R&D

nanoHUB 2022

VISION

MISSION

Definition

Where we want to go Vision Aspiration to accelerate innovation through user-centric science and engineering

> Why we exist & how we behave

Mission

to make science and engineering products usable, discoverable, reproducible, and easy to create for learners, educators, researchers, and business professionals