CIS-IEEE 2017 Conference Renewable Energy Session Renewable Energy's Impact of Power Systems

Indiana University Bloomington, Indiana November 10, 2017

Ben Huckaba, P.E. President & Principal Engineer 317-273-9841 benh@alphaeng.us

Alpha Engineering, Inc.

7760 W New York St

Indianapolis, IN

www.alphaeng.us

Agenda

- IEEE Standard 1547 & 2030
- 1547.7-2013, Guide for Conducting Distribution Impact Studies for Distributed Resource Interconnection
 - Modeling & System Data
 - Analysis
 - Results & Recommendations
- Case Study Utility Scale (1 MW PV to 12.47 kV)

IEEE 1547 & IEEE 2030

- IEEE 1547 Series of Interconnection Standards
- <u>http://grouper.ieee.org/groups/scc21/1547_series/154</u>
 <u>7_series_index.html</u>
- IEEE 2030 Series of Smart Grid Interoperability Stds
- <u>http://grouper.ieee.org/groups/scc21/2030_series/203</u>
 <u>0_series_index.html</u>

Source: T. Basso, NREL, "IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid", December 2014.

IEEE 2030 Series

IEEE Std 2030 (2011) Draft Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), and End-Use Applications and Loads

> IEEE Std P2030.1 Draft Guide for Electric-Sourced Transportation Infrastructure

IEEE Std P2030.2 Draft Guide for the Interoperability of Energy Storage Systems Integrated with the Electric Power Infrastructure

IEEE Std P2030.3 Draft Standard for Test Procedures for Electric Energy Storage Equipment and Systems for Electric Power Systems Applications

Future Smart Grid Interoperability Standards (TBD)

- Synchronous Generator
 - Adjust KVAR by field winding
- Induction Generator
 - Needs external source of excitation
- Wind Turbines
 - Machine based by typically coupled by converters
- Inverter-based PV

- Negative Load
 - Current Source
 - Real Current
 Injections
 - Reactive Current
 Injections

Circuit Element Editor					8 <mark>- x</mark>
Name GEN601 💋		Gen	nerator -	GEN601	
Type Generator	Generati	or Data Fau	lt Model Pro	files Impedar	nce Projects
Phase ABC 🔻 🕌					
Мар	<u>(</u>	Generator Mo	del Negative	e Load	-
📃 Hide Downline					
Label 💿 On 💿 Off Label Text 💿 Name 💿 Map	Total	Generator kV/	kW 4 1080	kvar) 270.6735	% PF 97
Parent Info Name UG600 Phase ABC		Genera	tor is to <u>h</u> old	1.05	PU Volts
Go To		<u>0</u> u	itput is set at	0.1	k₩
Children of Element	<u>N</u>	<u>1</u> aximum leadi	ing output is	250	kvar
Source XFMR608	N	1 <u>a</u> ximum lagg	ing output is	250	kvar
	Cor	nnected			
		0	Wye	🔘 Delta	
📘 Close 🛞 Navigator					
New Castle/Delp					
🖶 WEST(PV)	7.200 kV	Line conne	ect: Wye		

onoi a Linoigy boolog

- Swing kVAR
 - Source of fixed
 KW
 - Variable source of KVAR to hold a specified voltage magnitude at the generator

Circuit Element Editor		? <mark>x</mark>				
Name GEN601 📝	Generator - GEN601					
Type Generator	Generator Data Fault Model Profiles Impedance	Projects				
Phase ABC 👻 🕌						
Мар	Generator Model Swing kvar	•				
🔲 Hide Downline						
Label © On Off Label Text © Name © Map	kW kvar Total Generator kVA 1080 270.6735	% PF 97				
Parent Info Name UG600 Phase ABC	Generator is to <u>h</u> old 1.05 Pl	U Volts				
Go To	<u>O</u> utput is set at 1080 k∖	N				
Name Main Children of Element	Maximum leading output is 250 kv	/ar				
Source XFMR608	Maximum lagging output is 250 kv	/ar				
	Connected					
	🔘 Wye 🔘 Delta					
📃 <u>C</u> lose 👯 Navigator						
New Castle/Delp						
B WEST(PV)	7.200 kV Line connect: Wye					

- Fault Definition
 - Utility grade
 inverters will have
 fault contribution
 specified or
 manufacturer can
 provide.
 - Residential inverters fall under general guidelines or rules of thumb.

Calculate Impedance from Faults									
Use Fault Duty Combine Transformer Impedance									
	L-G (Volts)	L-L (Volts)							
Source Voltage	7199.558	12470							
Magnitude (Amps) Angle (deg)									
Three Phase Fault	147	-75							
Line-to-Ground Fault	147	-75							
	R	+ jX							
Positive Sequence	12.67607	47.30775 Ohms							
Zero Sequence	12.67607	47.30775 Ohms							
	🗸 Upda	ate <u>I</u> <u>C</u> lose							

System Data

- Updated available fault current at substation
- Retail usage data, preferable detailed AMI/AMR data
- Detailed (<= 15 minute) wholesale usage data
- In case of solar, can filter out only daylight hours
- System data
 - Regulator and capacitor sizes and settings
 - Very important to accurately model behaviors of each
 - Conductor size and distance (impedance)

Source Data Example – 15 Minute Wholesale Data

Methodology – Potential for Unintended Islands

- IEEE 1547.7 Section 7.3
- Generator must detect island condition and trip offline within 2 seconds
- Generation exceeds 33% of circuit loading, particularly during minimal loading
- Direct Transfer Trip is common mitigation strategy when islanding conditions are present
- If substation feeder reclosing is allowed on a DG circuit, incorporate breaker status and DTT in reclosing scheme or increase trip interval to allow DG to deenergize and open
- Monitor utility side voltage of PCC and only allow DG to close when utility source is present and healthy

Methodology – Steady State Conditions

- IEEE 1547.7 Section 7.4
- Compare DG rating to the rated capacity of the substation transformer and circuit. DG rating must be less than rating of both substation and feeder
- Transformer serving DG must be larger than rated size of DG itself

Methodology – System Protection

- IEEE 1547.7 Section 7.5
- Device ratings must be sufficient to interrupt the combined fault current of the EPS and PV generation.
- DTT scheme typical
- Protective devices be programmed one trip lockout or have open interval delayed.
- DG should contribute less than 10% of available fault current on primary system nearest the DG source.
- Prefer radial system configuration and not looped or meshed
- Recommend three phase, four wire, effectively grounded system, terminated as a grounded wye on the utility side of the PV generation step up transformer. This avoids overvoltage conditions on EPS during single phase to ground faults.

Methodology – Steady State Voltage Regulation

- IEEE 1547.7 Section 7.6
- Must maintain ANSI C84.1-2011 Range A voltage values (118-126V)
- Allow the inverters to import or export reactive power as needed to maintain 97% PF, as mentioned in IEEE 1574.7 – 7.6.2.4.
- Concerned that during periods of light loading unacceptably high voltage will result during periods of back-feeding.
 - What is normally a voltage drop in a radial-fed system becomes a voltage rise during when PV is exporting energy back onto the distribution system.

Methodology – Power Quality

- IEEE 1547.7 Section 7.7
- Addresses how the "rapid fluctuation or loss of output from the proposed DR may cause voltage sag/swell or flicker. DR may introduce unacceptable harmonic distortion."
- Review historical solar insolation data from the National Renewable Energy Laboratory (NREL) NREL Historical Solar Insolation Data: <u>https://mapsbeta.nrel.gov/nsrdb-viewer/</u>.
- Convert to Watts: NREL's PV Watts calculator NREL PV Watts Calculator: <u>http://pvwatts.nrel.gov/pvwatts.php</u>.
- Alpha Engineering has found that most pronounced impact on the EPS is the complete loss of generation due to breaker trip.
- Rely upon inverter manufacturer to certify acceptable THD.

Clear Sky Insolation Profiles

Source: National Renewable Energy Laboratory (NREL) METSTAT (Meteorological/Statistical) solar radiation model.

Example Ramping Rates of PV

Source: EPRI Distributed PV Monitoring Project. High Penetration PV Workshop, April 19, 2012.

Trip Limits and Tripping Times – Per IEEE 1547.2

Utility Interconnection Voltage and Frequency Trip Limits and Trip Times							
Interconnection System Response to Abnormal Voltages							
Condition	Maximum Time at 60 Hz Before Cessation of Current						
А	V < 50% V _{NOM}	Rated (60 Hz)	<0.16 sec default per IEEE 1547 (Adjustable 0 to 65.535 sec)				
В	50 ≤ V < 88% V _{NOM}	Rated (60 Hz)	<2 sec default per IEEE 1547 (Adjustable 0 to 65.535 sec)				
С	120 < V < 120% V _{NOM}	Rated (60 Hz)	<1 sec default per IEEE 1547 (Adjustable 0 to 65.535 sec)				
D	V ≥ 120% V _{NOM}	Rated (60 Hz)	<0.16 sec default per IEEE 1547 (Adjustable 0 to 65.535 sec)				

Trip Limits and Tripping Times – Per IEEE 1547.2

Interconnection System Response to Abnormal Frequencies								
Condition	Voltage (V) Range	Frequency (Hz)	Maximum Time at 60 Hz Before Cessation of Current					
E	Rate d V _{NOM}	70.0 Hz (default set point) (Adjustable 50.0 - 80.0 Hz)	3 sec set point (default set point (Adjustable 0 to 65.535 sec)					
F	Rated V _{NOM}	>60.5 Hz (default per IEEE 1547) (Adjustable 50.0 - 70.0 Hz)	<0.16 sec default per IEEE 1547 (Adjustable 0 to 65.535 sec)					
G	Rate d V _{NOM}	59.8 Hz (default per IEEE 1547) (Adjustable 40.0 - 60.0 Hz)	Adjustable 0 to 655.35 sec 299.95 sec (defaut in inverter setting)					
н	Rate d V _{NOM}	<57.0 Hz (default per IEEE 1547) 57.0 Hz (default set point) (Adjustable 40.0 - 60.0 Hz)	<0.16 sec default per IEEE 1547 (Adjustable 0 to 65.535 sec)					

Trip Limits and Tripping Times – Per IEEE 1547.2

Notes:

1. Base voltages are the nominal system voltages stated in ANSI C84.1-1995.

2. DR \leq 30 kW, maximum clearing times.

3. DR > 30 kW, default clearing times.

Case Study #1 – 1MW PV to 12.47 kV EPS

- Had to avoid Duke Metering Point within 0.5 Miles of PV site
- Instead connect to the nearby REMC station 4.1 Miles from PV site
- Two (2) Schneider Electric SC 540 Inverters
- 4,320 SolarWorld XL 315 Mono PV Modules
- ATI Single Axis Tracker 33% GCR
- One (1) 1200 KVA, Z = 5.5%, 12.47 kV Wye-Grounded, 300 V Wye Set Up Transformer

Case Study #1 – 1MW PV to 12.47 kV EPS

Case Study #1 – System Data

- 2012 2015 Retail and Wholesale Data
- Did not have demand or TOU data for residential consumers
- Removed nightly data
- Updated source data
- Updated system model
- Updated device data (capacitor/regulators)

Analysis – Steady State Conditions & Power Quality

- Proposed normal configuration at *maximum* demand loading with no PV generation.
- 1.08 MVA at 97% PF of PV generation at *maximum* demand loading in proposed normal configuration.
- Suddenly trip offline PV generation at rated PV generation at *maximum* demand loading in proposed normal configuration
- Proposed normal configuration at *minimum* demand loading with no PV generation.
- 1.08 MVA at 97% PF of PV generation at *minimum* demand loading in proposed normal configuration.
- Suddenly trip offline PV generation at rated PV generation at *minimum* demand loading in proposed normal configuration.

Analysis – Steady State Conditions & Power Quality

	PV		PCC Rec	loser		Substation Regulated Bus Minimum		n Voltage	ge Maximum Voltage				
Scenario	Status	Voltage	KW	KVAR	PF %	Voltage	KW	KVAR	PF %	Voltage	Location	Voltage	Location
PEAK LOAD: Reconfigured NCS Peak (6.63 MW @ 99.2% PF, Reconfigured Circuit 102 Peak: 3.7 MW @ 99.5% PF													
1	OFF	121.97	0*	0*	-	123.4	6,565.4	856.0	99.2%	120.9	06 8550	123.4	Regulated Station Bus
2	ON	123.47	-1,068.3	-122.4	99.3%	123.5	5,492.9	717.2	99.1%	121.3	06 8550	123.5	Regulated Station Bus
Voltage Flicker (%)				Voltage Flicker (%)		Voltage Flicker (%)		Voltage Flicker (%)					
3	TRIP	1.23%	-	-	-	0.08%	-	-	-	0.33%	06 8550	0.08%	Regulated Station Bus
MINIMUM LOAD: Reconfigured NCS Load : 2.3 MW @ -92.2% PF, Reconfigured Circuit 102 Load 1.3 MW @ -86.4 PF													
4	OFF	122.87	0*	0*	NA	123.5	2,289.4	-971.3	-92.0%	122.8	06 8550	123.5	Regulated Station Bus
5	ON	123.97	-1,068.5	-32.9	99.9%	123.6	1,225.3	-974.8	-78.0%	123.1	06 8550	123.6	Regulated Station Bus
	Voltage Flicker (%)			Voltage Flicker (%)		Voltage Flicker (%)		Voltage Flicker (%)					
6	TRIP	0.90%	-	-	-	0.08%	-	-	-	0.24%	06 8550	0.24%	Regulated Station Bus

Note: *When PV is offline, there will be minimal load for site equipment and to energize 10 kVA and 1200 kVA transformers.

Mitigation – Steady State Conditions & Power Quality

- Rebuilt 1.25 miles of 4/0 ACSR primary 12.47 kV line to 336 ACSR in order to manage voltage drop/rise between PV site and regulated substation bus.
- Installed DTT as PV generation exceeded 33% of minimal system loading.
- Reconfigured distribution circuit in effort to avoid or minimize PV generation from back-feeding onto 12.47 kV bus of substation
- Reduced substation regulators bandwidth setting to avoid voltage rise being too great near PV generation.
- Increased recloser opening interval in order to allow PV inverters to separate from EPS.

Sources

- IEEE 1547 & IEEE 2030 sites previously listed
- 2012 2016 Milsoft User Conference Papers
 - Original source data cited above.

Summary

- IEEE Standard 1547 & 2030
- 1547.7-2013, Guide for Conducting Distribution Impact Studies for Distributed Resource Interconnection
 - Modeling & System Data
 - Analysis
 - Results & Recommendations
- Case Study Utility Scale (1 MW PV to 12.47 kV)

